Answer :

According to the problem, angles E and F are equal. Angles D and G are equal.

Also, if the trapezoid is isosceles, then FG = DE by definition. So, we express the following

[tex]\begin{gathered} FG=DE \\ 11=a-4 \end{gathered}[/tex]

Let's solve for a

[tex]\begin{gathered} 11+4=a \\ a=15 \end{gathered}[/tex]

We already know that the sum of all the interior angles is 360°.

[tex]c+c+4c-20+4c-20=360[/tex]

Let's solve for c

[tex]\begin{gathered} 10c-40=360 \\ 10c=360+40 \\ c=\frac{400}{10}=40 \end{gathered}[/tex]

Then, we find each angle using the value of c

[tex]\begin{gathered} D=c=40 \\ G=c=40 \\ E=4c-20=4\cdot40-20=160-20=140 \\ F=4c-20=4\cdot40-20=160-20=140 \end{gathered}[/tex]

Hence, angles D and G measure 40°, angles E and F measure 140°.

Other Questions