Answer :
a.) Let x be a random variable representing the mean breaking strenght of the 4 untreated specimens.
P(x > 50) = 1 - P(x < 50) = 1 - P(z < (50 - 51.8)/2.9) = 1 - P(z < -0.6207) = 1 - [1 - P(z < 0.6207)] = P(z < 0.6207) = 0.7326
b.) P((x - y) > 25) = P(z > 25 - (51.8 - 20.9)/sqrt(2.9^2 + 1.8^2)) = P(z > (25 - 30.9)/sqrt(11.65)) = P(z > -1.7286) = 1 - P(z < 1.7286) = 1 - 0.95806 = 0.04194
P(x > 50) = 1 - P(x < 50) = 1 - P(z < (50 - 51.8)/2.9) = 1 - P(z < -0.6207) = 1 - [1 - P(z < 0.6207)] = P(z < 0.6207) = 0.7326
b.) P((x - y) > 25) = P(z > 25 - (51.8 - 20.9)/sqrt(2.9^2 + 1.8^2)) = P(z > (25 - 30.9)/sqrt(11.65)) = P(z > -1.7286) = 1 - P(z < 1.7286) = 1 - 0.95806 = 0.04194