Answer :
Given:
[tex]\mu=232,\text{ }\sigma=21.4,\text{ n=85 and M=235.9}[/tex]The z-score value is
[tex]z=\frac{M-\mu}{\frac{\sigma}{\sqrt[]{n}}}[/tex][tex]\text{ Substitue }\mu=232,\text{ }\sigma=21.4,\text{ n=85 and M=235.9, we get}[/tex][tex]z=\frac{235.9-232}{\frac{21.4}{\sqrt[]{85}}}[/tex][tex]z=\frac{\sqrt[]{85}(235.9-232)}{21.4}[/tex][tex]z=1.68019[/tex]P value from the z table is
[tex]P(-235.9M<235.9)=0.45354[/tex][tex]P(M<235.9)-0.5=0.45354[/tex][tex]P(M<235.9)=0.95354[/tex]We know that
[tex]P(M>235.9)=1-P(M<235.9)[/tex][tex]P(M>235.9)=1-0.95354[/tex][tex]P(M>235.9)=0.046459[/tex]Hence the answer is
[tex]P(M>235.9)=0.046459[/tex]