Answer :

x=4, y=0

Explanation

Step 1

Let

[tex]\begin{gathered} 2x+10y=8\text{ Equation (1)} \\ 3x-10y=12\text{ Equation (2)} \end{gathered}[/tex]

Step 2

add equation (1) and equation(2) to eliminate y

[tex]\begin{gathered} 2x+10y=8\text{ } \\ 3x-10y=12\text{ } \\ ---------- \\ 5x+0=20 \\ 5x=20 \\ \text{divide both sides by 5} \\ \frac{5x}{5}=\frac{20}{5} \\ x=4 \end{gathered}[/tex]

Step 3

now, let's find y:

replace the value of x in equation (1) and isolate y

[tex]\begin{gathered} 2x+10y=8 \\ 2(4)+10y=8 \\ 8+10y=8 \\ \end{gathered}[/tex]

now, isolate y

[tex]\begin{gathered} 8+10y=8 \\ \text{subtract 8 in both sides} \\ 8+10y-8=8-8 \\ 10y=0 \\ \text{Divide both sides by 10} \\ \frac{10y}{10}=\frac{0}{10} \\ y=0 \end{gathered}[/tex]

so, the answer is

[tex]x=4,\text{ y=0}[/tex]

we can verify

[tex]\begin{gathered} 2x+10y=8\text{ Equation (1)} \\ 2(4)+10(0)=8\text{ } \\ 8+0=8 \\ 8=8\text{ true} \\ \text{and} \\ 3x-10y=12\text{ Equation (2)} \\ 3(4)-10(0)=12\text{ } \\ 12-0=12 \\ 12=12\text{ true} \end{gathered}[/tex]

I hope this helps you

Other Questions