Answer :
Answer:
Approximately [tex]7.1 \times 10^{3}\; {\rm J}[/tex] (given: [tex]g = 9.8\; {\rm m\cdot s^{-2}}[/tex].)
Explanation:
To find the change in the gravitational potential energy ([tex]\text{GPE}[/tex]), use the formula:
[tex]\begin{aligned}& (\text{change in GPE}) \\ &= (\text{mass})\, (g)\, (\text{change in height})\end{aligned}[/tex].
Assume that gravitational field strength [tex]g[/tex] is constant (e.g., [tex]g = 9.8\; {\rm m\cdot s^{-2}}[/tex].) For an object of mass [tex]m[/tex], if the altitude of the object changes by [tex]\Delta h[/tex], the [tex]\text{GPE}[/tex] of that object would change by [tex]m\, g\, \Delta h[/tex].
In this question, the mass of Ben is [tex]m = 63.2\; {\rm kg}[/tex]. It is given that [tex]g = 9.8\; {\rm m\cdot s^{-2}} = 9.8\; {\rm N\cdot kg^{-1}}[/tex] and is constant. Since change in the altitude of Ben is [tex]\Delta h = 11.5\; {\rm m}[/tex], the change in the ([tex]\text{GPE}[/tex]) of Ben would be:
[tex]\begin{aligned} m\, g\, \Delta h &= (63.2\; {\rm kg}) \, (9.8\; {\rm N\cdot kg^{-1}})\, (11.5\; {\rm m}) \\ &\approx 7.1\times 10^{3}\; {\rm N\cdot m} = 7.1\times 10^{3}\; {\rm J} \end{aligned}[/tex].