Answer :
Answer:
Option A [tex]-2(n-3)[/tex]
Step-by-step explanation:
we have
[tex]-(2n-6)[/tex]
Eliminate the parenthesis
[tex]-(2n-6)=-2n+6[/tex]
Verify each case
case A) [tex]-2(n-3)[/tex]
[tex]-2(n-3)=-2n+6[/tex]
therefore
[tex]-2n+6=-2n+6[/tex] -----> is true
case A is equivalent to the given expression
case B) [tex]2(n-6)[/tex]
[tex]2(n-6)=2n-12[/tex]
therefore
[tex]-2n+6\neq2n-12[/tex]
case B is not equivalent to the given expression
case C) [tex]2n-6[/tex]
we have that
[tex]-2n+6\neq2n-6[/tex]
therefore
case C is not equivalent to the given expression
case D) [tex]2n+6[/tex]
we have that
[tex]-2n+6\neq2n+6[/tex]
therefore
case D is not equivalent to the given expression