Answer :
[tex]\bf \textit{Law of sines}
\\ \quad \\
\cfrac{sin(\measuredangle A)}{a}=\cfrac{sin(\measuredangle B)}{b}=\cfrac{sin(\measuredangle C)}{c}\\\\
-------------------------------\\\\
\begin{cases}
\measuredangle A=0.1\\
\measuredangle B=1
\end{cases}\quad thus\implies \measuredangle C=\pi -A-B\implies \measuredangle C=\pi -1.1[/tex]
[tex]\bf \cfrac{sin(B)}{b}=\cfrac{sin(C)}{c}\implies \cfrac{sin(1)}{b}=\cfrac{sin(\pi -1.1)}{9} \\\\\\ \boxed{\cfrac{9sin(1)}{sin(\pi -1.1)}=b} \\\\\\ \cfrac{sin(A)}{a}=\cfrac{sin(C)}{c}\implies \cfrac{sin(0.1)}{a}=\cfrac{sin(\pi -1.1)}{9} \\\\\\ \boxed{\cfrac{9sin(0.1)}{sin(\pi -1.1)}=a}[/tex]
make sure your calculator is in Radian mode.
[tex]\bf \cfrac{sin(B)}{b}=\cfrac{sin(C)}{c}\implies \cfrac{sin(1)}{b}=\cfrac{sin(\pi -1.1)}{9} \\\\\\ \boxed{\cfrac{9sin(1)}{sin(\pi -1.1)}=b} \\\\\\ \cfrac{sin(A)}{a}=\cfrac{sin(C)}{c}\implies \cfrac{sin(0.1)}{a}=\cfrac{sin(\pi -1.1)}{9} \\\\\\ \boxed{\cfrac{9sin(0.1)}{sin(\pi -1.1)}=a}[/tex]
make sure your calculator is in Radian mode.