Answer :

positive sloping linear graph with hole at negative 3, negative 1 intersecting the x axis at negative two and the y axis at two

Answer:

The graph of given function is shown below.

Step-by-step explanation:

The given function is

[tex]f(x)=\frac{x^2+5x+6}{x+3}[/tex]

Factorize the numerator.

[tex]f(x)=\frac{x^2+3x+2x+6}{x+3}[/tex]

[tex]f(x)=\frac{x(x+3)+2(x+3)}{x+3}[/tex]

[tex]f(x)=\frac{(x+2)(x+3)}{x+3}[/tex]

Cancel out the common factor.

[tex]f(x)=x+2[/tex]

It is a straight line because it is a one degree polynomial.

At x=0,

[tex]f(0)=0+2=2[/tex]

The y-intercept of the function is (0,2).

Put f(x)=0

[tex]0=x+2[/tex]

[tex]x=-2[/tex]

The x-intercept of the function is (-2,0).

Equate the cancel factor equal to 0, to find the hole of the function.

[tex]x+3=0\Rightarrow x=-3[/tex]

The function has hole at x=-3.

The graph of given function is shown below.

${teks-lihat-gambar} DelcieRiveria

Other Questions