Answer :

lublana

Answer:

[tex]x=\frac{7+\sqrt{65}}{2}, x=\frac{7-\sqrt{65}}{2}[/tex]

Step-by-step explanation:

We are given that a quadratic equation

[tex]x^2=7x+4[/tex]

[tex]x^2-7x-4=0[/tex]

We have to find the solutions of the quadratic equation.

a=1, b=-7,v=-4

Quadratic formula:[tex]x=\frac{-b\pm\sqrt{b^2-4ac}{2a}[/tex]

Substitute the values in the quadratic formula

[tex]x=\frac{-(-7)\pm\sqrt{(-7)^2-4(1)(-4)}}{2(1)}[/tex]

[tex]x=\frac{7\pm\sqrt{49+16}}{2}[/tex]

[tex]x=\frac{7\pm\sqrt{65}}{2}[/tex]

[tex]x=\frac{7+\sqrt{65}}{2}, x=\frac{7-\sqrt{65}}{2}[/tex]

Hence, the solutions of quadratic equation are

[tex]x=\frac{7+\sqrt{65}}{2}, x=\frac{7-\sqrt{65}}{2}[/tex]

alexos54

Answer:

C

Step-by-step explanation:

got it right

Other Questions