Which equations represent hyperbolas?

Answer:
The correct options are 2 and 5.
Step-by-step explanation:
The general form of conics is
[tex]Ax^2+Bxy+Cy^2+Dx+Ey+F=0[/tex]
This equation represents the hyperbola if
[tex]B^2-4AC>0[/tex]
compare the given equations with the general equation.
In option 1,
[tex]A=2,B=0,C=2,D=16,E=14,F=-9[/tex]
[tex]B^2-4AC=(0)^2-4(2)(2)=-16<0[/tex]
This equation does not represents a hyperbola.
In option 2,
[tex]A=2,B=0,C=-5,D=4,E=-10,F=57[/tex]
[tex]B^2-4AC=(0)^2-4(2)(-5)=40>0[/tex]
This equation represents a hyperbola.
In option 3,
[tex]A=-1,B=0,C=-7,D=5,E=2,F=-81[/tex]
[tex]B^2-4AC=(0)^2-4(-1)(-7)=-28<0[/tex]
This equation does not represents a hyperbola.
In option 4,
[tex]A=0,B=0,C=-2,D=1,E=4,F=15[/tex]
[tex]B^2-4AC=(0)^2-4(0)(-2)=0[/tex]
This equation does not represents a hyperbola.
In option 5,
[tex]A=-1,B=0,C=3,D=12,E=7,F=11[/tex]
[tex]B^2-4AC=(0)^2-4(-1)(3)=12>0[/tex]
This equation represents a hyperbola.
Therefore the correct options are 2 and 5.