Answer :
Cost of machine = $1,000
[tex]NPV of revenues = p( \frac{1- (1+RoR)^{-n} }{RoR} )[/tex] = [tex]600( \frac{1- (1+0.1)^{-3} }{0.1} )[/tex] = $1,492.11
[tex]NPV of salvage value = FV ( \frac{1}{ (1+RoR)^{n} } [/tex] )= [tex]100( \frac{1}{ (1+0.1)^{3} } )[/tex] = $75.13
Total NPV = -1000+1492.11+75.13 = $567.24 ≈ $567
[tex]NPV of revenues = p( \frac{1- (1+RoR)^{-n} }{RoR} )[/tex] = [tex]600( \frac{1- (1+0.1)^{-3} }{0.1} )[/tex] = $1,492.11
[tex]NPV of salvage value = FV ( \frac{1}{ (1+RoR)^{n} } [/tex] )= [tex]100( \frac{1}{ (1+0.1)^{3} } )[/tex] = $75.13
Total NPV = -1000+1492.11+75.13 = $567.24 ≈ $567