Answer :

ktreyb
Going off of your description, I got and solved this equation:

[tex] \frac{ \frac{18x-6}{9x^{5} }}{ \frac{15x+5}{21x^{2} } } [/tex]

I simplified it to:

[tex] \frac{ \frac{6(3x-1)}{9x^{5}} }{ \frac{5(3x+1)}{21 x^{2} } } [/tex]

I then simplified again and flipped the second fraction to get a multiplication problem:

[tex] \frac{2(3x-1)}{3 x^{5} }( \frac{21 x^{2} }{5(3x+1)} [/tex]

Which then simplifies to your answer:

[tex] \frac{14(3x-1)}{5 x^{3}(3x+1)} [/tex]

Answer:     [tex]\frac{98(3x-1)}{3^7.5x^3(3x+1)}[/tex]

Step-by-step explanation:

Given expression, [tex]\frac{18x-6/(9x)^5}{15x+5/(21)^2}[/tex]

= [tex]\frac{(18x-6)\times 21^2x^2}{9^5.x^5\times (15x+5)}[/tex]

= [tex]\frac{(18x-6).7^2}{x^3.9^4(15x+5)}[/tex]

=[tex]\frac{2\times 7^2(3x-1)}{3^7x^3(15x+5)}[/tex]

=[tex]\frac{2\times 49(3x-1)}{3^7x^3.5(3x+1)}[/tex]

= [tex]\frac{98(3x-1)}{3^7.5x^3(3x+1)}[/tex]

Other Questions