Answer :
The angle between vectors is given by:
cos (x) = (u.v) / (lul * lvl)
We have then:
u.v = (- 3i + 3j) * (3i + 2j)
u.v = (-3 * 3) + (3 * 2)
u.v = -9 + 6
u.v = -3
We look for the module of each vector:
lul = root ((- 3) ^ 2 + (3) ^ 2) = 4.242640687
lvl = root ((3) ^ 2 + (2) ^ 2) = 3.605551275
Substituting values:
cos (x) = (-3) / ((4.242640687) * (3.605551275))
x = acos ((- 3) / ((4.242640687) * (3.605551275)))
x = 101.31 degrees
Answer:
The angle measure between vectors and v is:
x = 101.31 degrees
cos (x) = (u.v) / (lul * lvl)
We have then:
u.v = (- 3i + 3j) * (3i + 2j)
u.v = (-3 * 3) + (3 * 2)
u.v = -9 + 6
u.v = -3
We look for the module of each vector:
lul = root ((- 3) ^ 2 + (3) ^ 2) = 4.242640687
lvl = root ((3) ^ 2 + (2) ^ 2) = 3.605551275
Substituting values:
cos (x) = (-3) / ((4.242640687) * (3.605551275))
x = acos ((- 3) / ((4.242640687) * (3.605551275)))
x = 101.31 degrees
Answer:
The angle measure between vectors and v is:
x = 101.31 degrees