Answer :

geerky42
The midpoint of the segment with endpoints (10, 6) and (-4, 8) would be
[tex]\left(\dfrac{10 + -4}2,\dfrac{6 + 8}2\right) = \left(\dfrac{6}2,\dfrac{14}2\right) = \boxed{(3,7)}[/tex]

Answer:

Mid point [tex](3,7)[/tex].

Step-by-step explanation:

Given : End point  (10, 6) and (-4, 8)

To find : Mid point .

Solution : We have given  End point  (10, 6) and (-4, 8)

Mid point : [tex](\frac{x_{1} +x_{2}}{2},\frac{y_{1} +y_{2}}{2})[/tex].

[tex]x_{1}=10[/tex]

[tex]x_{2}=-4[/tex]

[tex]y_{1}=6[/tex]

[tex]y_{2}=8[/tex].

Then , [tex](\frac{10 +(-4)}{2},\frac{6 + 8}{2})[/tex].

[tex](\frac{10 -4}{2},\frac{14}{2})[/tex].

[tex](\frac{6}{2},\frac{14}{2})[/tex].

[tex](3,7)[/tex].

Therefore, Mid point [tex](3,7)[/tex].

Other Questions